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ABSTRACT

This paper investigate the capability of transformer in learning a fundamental
sequential model — the Hidden Markov Model (HMM). We design various types
of HMM examples and variants inspired by theory, and conduct extensive experi-
ments testing and comparing the performance of both transformers and Recurrent
Neural Networks (RNNs). Our experiments reveal three important findings: (1)
Transformers can effectively learn a large number of HMMs, but this require the
depth of transformers to be at least logarithmic in the sequence length; (2) There
are challenging HMMs where Transformers struggle to learn, while RNNs succeed.
We also consistently observe that Transformers underperform RNNs in both train-
ing speed and testing accuracy across all tested HMM models. (3) Long mixing
times and the lack of access to intermediate latent states significantly degrade
Transformer’s performance, but has much less impact on RNNs’ performance. To
address the limitation of transformers in modeling HMMs, we demonstrate that a
variant of the Chain-of-Thought (CoT), called block CoT in the training phase, can
help transformers to reduce the evaluation error and to learn longer sequences at a
cost of increasing the training time. Finally, we complement our empirical findings
by theoretical results proving the expressiveness of transformers in approximating
HMMs with logarithmic depth.

1 INTRODUCTION

Transformer-based architectures (Vaswani et al., 2017) have demonstrated exceptional capabilities in
tackling sequential modeling tasks across diverse domains, including natural language processing
(Brown et al., 2020), computer vision (Dosovitskiy et al., 2020), robotics (Brohan et al., 2023),
reinforcement learning (Janner et al., 2021; Lee et al., 2022), etc. Despite their widespread success,
the effectiveness of Transformers in learning basic sequential models, such as the Hidden Markov
Model (HMM), remains unclear. Investigating this question is crucial for understanding the strengths
and limitations of Transformers, especially considering that HMMs are arguably among the simplest
yet fundamental tools for modeling natural language (Merialdo, 1994; Vogel et al., 1996; Chiu &
Rush, 2020) and time series from applications ranging from control systems (Franklin et al., 2002) to
robotics (Doucet et al., 2009).

Furthermore, HMMs bear close relation to the widely adopted Partially Observable Markov Decision
Process (POMDP) framework in reinforcement learning (e.g. Hausknecht & Stone, 2015; Rashid
et al., 2020), as an HMM can be regarded as a simplification of POMDP, which has no action-input
control. To this end, this paper investigates the following fundamental questions through extensive
empirical experiments and theoretical analysis:

1. Can Transformer effectively learn HMM models and their variants?

2. How does its performance compare to that of Recurrent Neural Network (RNN) in terms of
training speed, hyperparameter tuning difficulty, and final accuracy?

3. Furthermore, when presented with an HMM sequence of a specific length, how many
attention layers are required to achieve a desired level of accuracy?

We are particularly interested in the last question due to the pivotal advantage of Transformers over
RNNs in long sequence modeling: the depth of the computation graph in Transformers scales linearly
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with the number of layers and remains (almost) independent of the sequence length, whereas that
of RNNs scales linearly with both. It is vital to verify whether such advantage indeed exists in long
sequence modeling tasks such as HMMs.

In this paper, we primarily focus on two fundamental tasks associated with HMMs: next-observation
prediction and belief inference (Rabiner & Juang, 1986). Next-observation prediction involves
predicting the next observation based on all preceding ones, while belief inference aims to deduce the
distribution of the hidden states from previous observations. Below, we present an overview of our
findings concerning the three aforementioned questions.

1. Transformers effectively learn to perform belief inference across all tested HMMs when
the training dataset includes true beliefs at each time step. However, in the task of next-
observation prediction, certain challenging HMM instances exist where Transformers strug-
gle to achieve low prediction loss.

2. In comparison, RNNs demonstrate the capability to successfully tackle all tasks across the
tested HMMs at a faster convergence speed, yielding lower testing error. Notably, RNN
training exhibits greater robustness compared to Transformers, particularly in the realms of
hyperparameter tuning and curriculum scheduling.

3. Our experiments reveal distinct patterns in the relationship between sequence length and
the minimal depth required for Transformers to learn effectively. These patterns can be
categorized into three groups:

• Hard instances: There exists challenging HMM instances where Transformers struggle
to learn, even for constant sequence length. These instances require further investigation
to identify the underlying reasons for the learning difficulties.

• Logarithmic scaling: For more complex sequential models such as structured HMMs,
we observe an approximate logarithmic dependency between the minimal depth re-
quired and the sequence length. This relationship holds for various structured HMM
instances, as corroborated by both theory and experiments.

• Constant depth: For simple sequential models such as random HMM and linear
dynamical system, a constant depth, independent of sequence length, is sufficient for
Transformers to learn accurately.

4. Motivated by the hard instances, we identified two key challenging regimes of HMMs for
Transformers: long mixing time and the lack of intermediate supervision signals during
training. The mixing time measures how many latest observations are required to predict
the next one (c.f. Section A.2), and we analyzed Transformer performance on HMMs with
varying mixing times to assess the impact of mixing time. Intermediate belief states are
provided for training in the belief state inference task, while only observation sequences
are available in next-observation prediction task, which significantly hampers Transformer
performance. Nevertheless, these factors have very little impact on RNN.

In order to address the limitations of Transformers in learning HMMs, we employ a variant of the
Chain-of-Thought (CoT) (Wei et al., 2022) prompting in the training phase called block CoT. Block
CoT feeds the output of the Transformer back to itself as input every b tokens, which reduces to the
standard CoT when b = 1. Our findings show that block CoT significantly decreases evaluation error
and enhances the sequence length that shallow Transformers can handle.

Finally, we also complement our empirical findings by theoretical results, which proves the scaling
between the sequence length and minimal depth from the perspective of expressiveness power.
Specifically, it is proved that an L-layer finite precision Transformer is able to fit any HMMs of at
least 2L sequence length.

1.1 RELATED WORK

Our work can be viewed as part of a broader effort to assess the ability of Transformer models on
simple, basic and well-defined tasks with synthetic data. Such an approach is advantageous because
it allows us to precisely evaluate the Transformer’s capabilities in a particular aspect, as we have
access to the ground truth model that generates the training data. Below, we highlight some related
works along this direction.
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Recently, a line of works (e.g., Garg et al., 2022; Bai et al., 2023; Bhattamishra et al., 2023;
Von Oswald et al., 2023) have studied training Transformer models for in-context learning of
regression tasks (e.g., linear regressions) utilizing synthetic datasets. A notable distinction between
in-context learning and learning HMMs lies in the data sequential nature. In in-context learning, all
tokens within a data sequence are independently sampled from the same data distribution. Conversely,
in HMMs, tokens are recursively generated, with each token strongly influenced by the preceding
ones, establishing a mutual dependency among them.

Previous studies have also explored the capability of Transformer models to learn elementary algo-
rithms, such as formal language transduction (Delétang et al., 2022), arithmetic calculation (Dziri
et al., 2023), recognizing formal languages (Bhattamishra et al., 2020), sorting (Zhou et al., 2023) and
learning semi-automata (Liu et al., 2022). These problems, as noted in (Liu et al., 2022), can all be
considered special cases of learning the state sequence of finite-state deterministic automata, which is
in turn special cases of of HMMs as noted in Appendix A.3. In comparison, our work focuses on
training Transformer models to learn both the state and observation sequence of stochastic HMMs,
which is a special case of more general stochastic POMDP but without input control. By focusing on
stochastic HMMs, our work aims to contribute to the understanding of how Transformer models can
learn and generalize from sequential data in the presence of intrinsic uncertainty.

In the belief state inference task, we provide true belief state at each step as intermediate supervision
signal for the networks, while only the next observation is provided in the other task. The difference
between these two tasks is very similar to training with CoT or without CoT—the belief states can be
regarded as intermediate CoT signals. It is observed in previous papers that CoT greatly improves the
performance of LLMs on multi-step reasoning tasks such as text generation (Wei et al., 2022; Wang
et al., 2022), code generation (Li et al., 2023), multi-step computations (Nye et al., 2021), and math
induction (Shao et al., 2024). There are also theoretical works Feng et al. (2023); Li et al. (2024)
showing the gap of expressive power of Transformers with and without CoT.

2 PRELIMINARIES

In this section, we briefly introduce the basics of HMM models and neural network models considered
in this paper.

2.1 SEQUENTIAL MODELS

An HMM can be formulated by a tuple (S,O,P,O, S0), where S is the state space, O is the
observation space, P(s′ | s) is the transition probability of transitioning to state s′ from state
s, O(o | s) is the probability of emitting observation o from state s, and S0 is the initial state.
By interacting with the HMM for T steps, one can obtain a trajectory (i.e., a sequence of states
and observations) (s0 = S0, o0, ..., sT , oT ), where ot is sampled from distribution O(· | st) and
unobserved. st+1 is sampled from P(· | st). We are particularly interested in two basic tasks for
learning an HMM in this paper, which are also known as two of the three key problems of HMMs
(Rabiner & Juang, 1986):

• Next-Observation prediction: A fundamental task is to predict the distributions of the next
observation given the history of observations: Pr(ot+1 | o1, ..., ot).

• Belief state inference: Assuming the size of the state space is n (i.e., S = [n] w.l.o.g.)
for a given HMM, belief state inference aims at computing the belief state bt ∈ Rn =
Pr(st | o1, o2, ..., ot) at step t given an observation sequence (o1, o2, ..., ot). We provide bt
as supervision signal for each step t in the training, but the network cannot use it as input
since the transition is unknown.

Throughout the paper, we use n to denote the size of the state space S if it is finite, or the dimension
of S if it is a Euclidean space. The size of the observation space is always finite, which we denote by
m.
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2.2 NEURAL NETWORK MODELS

Two fundamental sequence-to-sequence models are considered in this paper: the recurrent neural
network (RNN) and Transformer.

RNN. Given a length-T sequence (x1, ..., xT ) as input, an RNN with embedding dimension d and
initial hidden state h0 ∈ Rd processes the input sequence as follows:

ht = ReLU (W1xt +W2ht−1 + b) , (2.1)

where W1,W2, b are the parameters of the RNN.

The final output sequence is obtained by applying a linear decoder layer on sequence (h1, ..., hT ) at
each position.

Transformer. The Transformer (Vaswani et al., 2017) is also a well-known sequence-to-sequence
model with significant successes on various prediction tasks. We use a pre-LN Transformer (c.f.
Appendix A.1) with depth L (i.e., L layers) that processes the data as follows:

Let X(0) ∈ RT×d be the output of a position-wise embedding layer (d is the embedding dimension
of the Transformer) given m0-dimensional length-T input sequence (x1, x2, ..., xT )

⊤ ∈ RT×m0 , the
Transformer apply L attention blocks sequentially on X(0). The l-th attention block transforms the
input by

Y (l−1) = X(l−1) +Attn(l)
(
X(l−1)

)
,X(l) = Y (l−1) + FFN(l)

(
Y (l−1)

)
, l ∈ [L], (2.2)

where Attn is a multi-head self-attention layer and FFN is a two-layer feed-forward network. The
final output is obtained by forwarding X(L) to a linear readout layer.

3 MODEL

In this section, we introduce the HMMs and their variant models explored in this paper, broadly
classified into two categories: fast-mixing models and slow-mixing or non-mixing structured models.
The mixing speed characterizes the “effective length” of past histories that influence the current
belief state. For instance, in a fast-mixing model, the belief state at the current step is essentially
influenced only by a few of the most recent observations, making them more amenable to fitting by
neural networks. The motivation for studying these HMMs is discussed in Appendix A.5.

3.1 FAST-MIXING HMMS

RanHMM: Random HMM. The initial set of sequential models under consideration comprises
random HMM instances with randomly initialized transition and emission probabilities. Our primary
focus is on the belief state inference problem within these random HMMs. This choice is motivated
by the observation that, as per (A.4), next-observation prediction is a relatively simpler task compared
to belief state inference when dealing with random HMMs.

RanLDS: Random Linear Dynamical System. A linear dynamical system is given by the fol-
lowing equation xt+1 = Axt + ζt, yt = Bxt + ξt, where xt ∈ Rn is the (hidden) state at step t,
yt ∈ Rm is the observation at step t, and ζt, ξt are independent random noises. It can be regarded as a
continuous HMM with linear transition and emission. We choose A,B as random orthogonal matrices
with n = m and ζt, ξt standard Gaussian noises for simplicity. It’s worth noting that predicting
the belief state and the next observation is equivalent in this context, given that B is orthogonal.
Therefore, our focus lies on next-observation prediction, distinguishing it from the RanHMM model.

The mixing time for all HMM models are summarized in Table 1.

3.2 SLOW OR NON-MIXING MODELS

Cyclic-DET: Deterministic Cyclic HMM. We begin by constructing an aperiodic HMM which
never converges to any stationary distribution. Consider a deterministic Markov Decision Process
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Figure 1: An illustration of Cyclic-DET model and Cyclic-HARD model. Left: A
Cyclic-DET model with 4 states and 2 actions. The transition graph of each action is a cyclic
permutation over the state space. Different actions may induce different cyclic permutation. Right:
Given a Cyclic-RND or Cyclic-DET model, the Cyclic-HARD model transforms it into a
larger HMM. The transition in Cyclic-HARD model always goes from stage 1 to 3 then back to
stage 1. The dotted line denotes a stochastic transition from stage 1 to stage 2 with probability α, and
the solid line denotes deterministic transition. States in stage 2 always emit a signal observation ∗
indicating the entrance of stage 3, and states in stage 3 emit the current state as observation.

(MDP) with n states, m actions, and the state transition function q : [n]× [m] → [n]. For each action
i ∈ [m], the state transition q(·, i) forms a cyclic permutation (i.e., a single cycle) over the state space
(see the left of Figure 1 for an example). Let bt ∈ [n] be the state at step t, at ∈ [m] be the action at
step t, then the updating rule is bt+1 = q(bt, at) ∈ [n], where action at is assumed to be sampled
from a uniform distribution over the action space. This model is equivalent to an HMM with nm
states and m observations (c.f. Proposition A.1).

Cyclic-RND: Stochastic Cyclic HMM. Proposition A.1 indeed presents a robust argument,
suggesting that any finite state MDP has an equivalent HMM representation. This insight prompts us
to introduce some level of randomness into the previous MDP to generate a stochastic cyclic HMM.
However, the randomness must be carefully calibrated; otherwise, it may become a fast-mixing
model, making it easy for neural networks to fit. For any cyclic permutation induced by an action
i ∈ [m], we simply introduce a small probability ε for state s to transit to its predecessor when taking
action i. The transition probability to its successor q(s, i) is 1− ε.

Cyclic-HARD : Cyclic HMM with multiple stages. The task of next-observation prediction is
straightforward for the three structured HMMs introduced earlier, as the next observation always
follows a uniform distribution. To investigate the difficulty of next-observation prediction in these
structured models, we devise a variant of the Cyclic-DET model depicted in Figure 1 (right part).
Consider a Cyclic-DET model with state space S, observation space O, transition probability
P(s′ | s), and emission probability O(o | s), we construct the Cyclic-HARD model as follows,
given a prediction rate 0 < α < 1.

The Cyclic-HARD model comprises three stages from left to right, with each stage having an
independent copy of state space S. The transition and emission probabilities of states in the first
stage are almost identical to the Cyclic-DET model, except that each state in the first stage has a
small probability α of transitioning to the second stage. The states in the second stage always emit
a prediction signal ∗ as the observation and transition to the last stage. The final stage, also called
the prediction stage, has states that always emit an observation indicating the state itself and then
transition back to the first stage.

Our specific interest lies in the next-observation prediction accuracy of states in the third stage, which
is equivalent to predicting the state after a random length of transitions. The formal definition is
provided as follows suppose the state space is S × {0, 1, 2} and observation space is S ∪ O ∪ {∗}:

• For all states (s, 0) in the first stage, it transitions to (s′, 0) with probability (1−α)P(s′ | s),
and transitions to (s, 1) with probability α. It emits o ∈ O with probability O(o | s).
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• For all states (s, 1) in the second stage, it transits to (s, 2) with probability 1 and emits ∗
with probability 1.

• For all states (s, 2) in the final stage (i.e., the prediction stage), it transition to (s, 0) with
probability 1 and emits s with probability 1.

3.3 AN ALGEBRAIC EXAMPLE

We also provide an example of the sequential models beyond standard HMMs.

MatMul: Matrix Multiplication. A common task in physics and math is to evaluate the state
of an unknown linear dynamical system given some action or observation ot at each step t. With
a little abuse of notations, given the state bt ∈ Rn at step t and an observation ot+1 at next step,
the next state is recursively updated as bt+1

def
= f(ot+1, bt) for some linear function f . Here we

assume f(o, b) = Aob for some unknown matrix Ao. In order to stabilize the system , we generate
orthonormal matrix Ao for all o ∈ O. For simplicity, the observation ot at each step follows a uniform
distribution over the observation space O. It is an algebraic task requiring the networks to handle
sequential data, and also a generalization of the constructed HMMs.

4 EXPERIMENTS

We systematically conducted experiments to assess the learnability of RNNs and Transformers across
various sequential models introduced in Section 3. The results consistently highlight the superiority
of RNNs over Transformers in terms of both convergence speed and evaluation accuracy across all
tasks. Besides, to delve deeper into the efficiency of Transformers with varying depths, we illustrate
an approximate scaling relationship between sequence length and required depth in Figure 3.

The HMM models exhibit distinct patterns in terms of scaling. For belief state inference, fast-mixing
models demonstrate compatibility with constant-depth Transformers, indicating ease of learnability
of these models. The scaling of structured HMMs for the belief state inference task is constrained to
at most log T for a specific sequence length T . The most challenging task lies in predicting the next
observation in Cyclic-HARD , where Transformers of different depths consistently struggle to fit a
sequence of constant length.

4.1 EXPERIMENTAL DESIGN

Training and evaluation data. For a given HMM, we initiate by generating a random instance
M. Subsequently, we roll out Ntrain = 5× 106 trajectories, each of length T = 120, forming the
training dataset. In a trajectory (s0, o1, s1, ..., oT , sT , oT+1, sT+1), the input sequence is consistently
(o1, o2, ..., oT ). The target sequence is defined as (b1, b2, ..., bT ) for belief state inference (where
belief states are computed using (A.3)), or (o2, o3, ..., oT+1) for next-observation prediction. All
trajectories are trained in a random order within a single epoch. To ensure fair comparison among
different neural network models, we keep the instance M fixed for a particular HMM. For evaluating
trained neural networks, we generate fresh data using M, and the reported evaluation loss is the
average loss across E = 256 trajectories.

Model training. We employ a standard decoder-only Transformer with learnable positional encod-
ing (Radford et al., 2019) for both belief state inference and next-observation prediction. The depth
L of the Transformer is varied from 1 to 7. The RNN model is always single-layer and takes the raw
sequence as input. Both models are trained by AdamW optimizer (Loshchilov & Hutter, 2017) with
the MSE loss (for MatMul and LDS) or cross entropy loss (for others). The total training epochs for
both models are 100. Additional details and hyperparameters can be found in Appendix C.

Evaluation metric. At the end of each epoch, we roll out E fresh trajectories from the instance to
evaluate the neural network. Suppose the sequence predicted by neural network is (x̂1, x̂2, .., x̂T ),
which is the predicted belief state or the predicted next observation distribution. Given the groundtruth
sequence (x1, x2, .., xT ), the evaluation loss at length t is defined as elt

def
= ∥x̂t−xt∥p/(3−p), where

6
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Figure 2: The evaluation loss at a specific sequence length of neural networks with optimized
hyperparameter for 4 HMMs. To illustrate the difference between RNNs and Transformers of
different depth, we choose the evaluation sequence length as 10, 30, 30, 120 for 4 tasks from left to
right respectively.The evaluation loss of Cyclic-HARD model only considers the states at prediction
stage since the prediction for other stages is simply a constant. The convergence speed and final
accuracy of RNN are at least as good as all Transformers, which are strictly better in many cases.

p = 2 for MatMul and RanLDS1, and p = 1 for others (because xt and x̂t are distributions so it is
essentially the total variation distance).

In practice, Transformers tend to learn more slowly than RNNs and are more sensitive to dataset
randomness and optimization. Consequently, Transformers may not successfully fit the sequential
model at the full length T . We consider Transformers to successfully fit the model at length t with an
error rate of ϵ if elt < ϵ for any t starting from some epoch, where ϵ is chosen as 0.05 or 0.1 in the
paper. The maximal length at which Transformers successfully fit at an error rate of ϵ is also referred
to as the ϵ-fit length.

4.2 CURRICULUM TRAINING

Given that fitting long sequences of length T directly from scratch might pose challenges for
Transformers, curriculum learning emerges as a widely adopted strategy to expedite and stabilize
training (Spitkovsky et al., 2010; Wang et al., 2021; Garg et al., 2022). Curriculum learning involves
dividing the training dataset into different subsets (curriculum stages) based on the measure of
difficulty, and regularly switching the training data subset from simple ones to challenging ones.

In HMM models, a natural difficulty measure is the length of the training sequences (Spitkovsky
et al., 2010; Garg et al., 2022). Following this curriculum design, we regularly increase the training
sequence length until it reaches T . Motivated by the theoretical insight that an L-layer Transformer
has a fit length of at least 2L for HMMs (c.f. Section 5.2), we adopt a doubling curriculum schedule.
Commencing from length 2L, this curriculum schedule doubles the length of the training sequence
after a fixed number of epochs. The total number of curriculum stages is set to 8− L. The 7-layer
Transformer is supposed to have only one stage at T = 120, the 6-layer Transformer has two stages
at length 64 and 120, etc.

4.3 EXPERIMENTAL RESULTS

Comparisons between RNNs and Transformers. The comparison between RNNs and Transform-
ers involves assessing the convergence rate, evaluation accuracy, and fit length, as depicted in Figure
2. We select four HMMs representing different categories and showcase the evaluation loss at specific
sequence lengths for different neural networks with carefully chosen hyperparameters (c.f. Section
C.1) during training. Across all four tasks, RNN consistently converges faster than all Transformers.
The evaluation accuracy of RNN is consistently superior or as small as that of Transformers at all
steps during training. Consequently, the fit length of RNN is at least as long as that of Transformers.
We do NOT plot the evaluation loss at the full length T because most shallow Transformers struggle
to fit length T , whereas RNN achieves a 0.05-fit length of T across all tasks.

Scaling between fit length and depth. Since shallow Transformers cannot fit all the HMMs at
full length T , we provide an illustration of the scaling between fit length and depth for different

1The norm of ∥xt∥ is increasing in RanLDS model, so we compute the relative loss to be ∥x̂t −
xt∥2/max(1, ∥xt∥2) in this case.
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Figure 3: The approximate scaling between fit length of error rate 0.05/0.1 and the depth of the Trans-
former. “State" denotes a belief state inference task, and “observation" denotes a next-observation
prediction task. There are roughly 3 different scaling pattern for the tasks, which is affected by the
mixing time and hidden information in training data. The closeness between 0.05-fit length and 0.1-fit
length reflects a small possibility of optimization caveats in the curves.

Transformers in Figure 3 (reported as the best value after hyperparameter tuning). The left two
figures show the fit length of error rate 0.05 and 0.1 for all tasks. The scaling curves reveal that
tasks can be roughly categorized into three classes based on Transformer performance. Fast-mixing
tasks RanHMM and RanLDS can be learned by constant-depth Transformers. The most challenging
Cyclic-HARD task cannot be fitted by an L(≤ 7)-layer Transformer even at constant length, while
other tasks exhibit at least an exponential dependency between fit length and depth. The exponential
2L scaling, as evident in the figure, aligns with our theoretical constructions discussed in the next
section2. It is also observed during training that the Transformers suffer from optimization instability
occasionally, which results in several decreasing trends on the curve.

The impact of the mixing-time. In order to verify the performance of Transformers on HMMs with
different mixing-time, we trained a 4-layer Transformer on the Cyclic-RND model with different
backward probability ϵ (c.f. Section 3.2). The evaluation loss at the end of training is shown in Figure
4. As ϵ increases, the mixing-time is decreasing from Table 1. Predicting the states of middle steps
will be difficult since it still requires a long history to decode, while the states of late steps are easier
to predict since they have converged to a fixed stationary distribution.

The benefits of curriculum training. In practice, we observed that the double schedule curriculum
training proves beneficial in terms of training time, convergence speed, and fit length. If the number
of curriculum stages is denoted as C, the double schedule effectively reduces the training time by a
multiplicative factor proportional to 1/C. This is because the training time scales quadratically with
the sequence length. Additionally, it facilitates faster convergence and/or longer fit length for certain
Transformers, as demonstrated in Figure 6 in the Appendix.

4.4 BLOCK CHAIN-OF-THOUGHT

For those tasks cannot be fitted by constant-depth Transformers, we investigate the possibility of
applying Chain-of-Thought (CoT) (Wei et al., 2022; Feng et al., 2023) or scratchpad training (Nye
et al., 2021) to reduce the required depth of the Transformers at a cost of extra training time. Intuitively,
it works for the tasks that is accessible to sufficient hidden information, such as the hidden belief states

2The only exception is the result of 7-layer Transformer on MatMul task. The fit length of this task is still
below 26 even if we have tries various tricks (e.g., different curriculum schedule, more training epochs, etc.).
We conjecture this is because the training of MatMul task converges slower than others (c.f. Appendix C.4).
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Figure 4: Left: The final evaluation loss of Cyclic-RND model with different ϵ and different mixing
time, leading to different patterns for trained Transformers. Right: The evaluation loss at length 60
for 8/12 block CoT training for 3-layer Transformer on Cyclic-DET task and 4-layer Transformer
on MatMul task. None of them has fit length 60 (dashed curves) without block CoT. The evaluation
loss reduces dramatically with 8/12 block CoT, where 8/12 is approximately the half of their 0.05-fit
length.

or informative observations (i.e., observations helpful to infer the hidden state) like Cyclic-DET
model.

CoT training involves using the output of the Transformer at each step as the input to predict the next
token autoregressively. However, this approach can be highly inefficient3. Leveraging the scaling
law of fit length for layers, we can feed the output (with stop-gradient during training) back into the
Transformer every b steps, where b > 1 is a constant whose value can be guided by the fit length of
the Transformer. We refer to this as b-block CoT training, which reduces the forward passes to 1/b of
the original CoT training. b-block CoT training significantly reduces the evaluation loss of shallow
Transformers at long sequence length, as demonstrated at the right side of Figure 3.

5 THE EXPRESSIVENESS POWER OF RNN AND TRANSFORMER

In order to understand the experimental results (e.g., the strong inductive bias of RNN, the logarithmic
scaling of the fit length of Transformers, the hardness of Cyclic-HARD model, etc.), we ask the
question whether there exists an RNN or Transformer that can produce (or express) these sequences
(e.g., the belief state or observation distributions) in a theoretical perspective. This question has
already been answered in general since it is known the RNN and Transformer can approximate a
large number of sequence-to-sequence models (Schäfer & Zimmermann, 2006; Yun et al., 2019)
given sufficient depth or width. In contrast, our interest lies in the representation efficiency of the
neural networks to approximate the sequential models. This prompts the question of how large the
neural networks should be to effectively approximate them. The proofs of all the theorems in this
section can be found in Appendix E.

5.1 RNN

First of all, we show that RNNs can approximate HMMs with determinsitic transition conveniently.

Theorem 5.1. For a deterministic HMM with state space size n and observation space size m,
there exists a single layer RNN model with embedding dimension d = O(nm) and ReLU activation
approximating the belief state sequence of length T with no error. The ℓ∞ norm of the parameters of
the RNN model is bounded by O(∥b0∥2).

3While we could use the hidden belief state in training labels as the autoregressive input to avoid computing
the output of the Transformer, this becomes challenging when sufficient hidden information is lacking in reality.
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5.2 TRANSFORMER

To avoid the unrealistic assumption that the neurons in Transformers have infinite precision (Dehghani
et al., 2018; Pérez et al., 2019), we require the neurons to be floating-point numbers of finite precision
in this paper. All the floating-point number computations will be rounded back (e.g. round-up,
round-down, round-to-the-nearest) to a floating-point number as in a classical computer. To be
specific, if we restrict the floating-point to have O(log T ) bits, it can represent all real numbers of
magnitude O(poly(T )) with a O(poly(1/T )) rounding error. After carefully analyzing the error
propagation, we come to the following theorem in terms of the expressiveness of the Transformers
for HMMs with deterministic transitions:
Theorem 5.2. For an HMM model with deterministic transition matrix, state space size n, and
observation space size m, there exists a log T -precision Transformer approximating the belief state
sequence of length T with O(poly(1/T )) ℓ∞ approximation error. The Transformer has depth
L = ⌈log2 T ⌉, embedding dimension 2n2 + 6, MLP width 4n3 + 2n2, and H = 2 attention heads.
The magnitude of the parameters in the Transformer is bounded by O(poly(T )).

Proof Sketch. For an HMM with deterministic transition, the belief state bt is always a one-hot vector.
Thus, we can reduce the HMM to a MatMul model with state dimension n and observation space
size m by setting Ao = P for all o ∈ O. It suffices to consider how to approximate the MatMul
model. Let Ai:j

def
=
∏j

k=i Aok , then the output sequence of the Transformer should be (A1:ib0)
T
i=1.

The intuition to produce such sequence with L layers is the divide-and-conquer approach (Liu et al.,
2022) computing the matrix multiplications

Amax(1,j−2l):j = Amax(j−2l,1):max(j−2l−1,0) ×Amax(j−2l−1+1,1):j (5.1)

as the output of layer l at position j, where A1:0
def
= I . The analysis of the error propagation is

somehow more complicated here than other divide-and-conquer construction due to the continuous
representation of the state. The full proof can be found in Appendix E.2.

Approximating stochastic HMMs is more challenging since they cannot be reduced to a MatMul
model due to the ℓ1 normalization step (c.f. Eqn. (A.3)). We show that if the Transformers have
T -precision (i.e., O(T ) bits) and an MLP at the end of the last attention block in place of the linear
DECODER layer, then it is possible for them to approximate stochastic HMMs with constant
stochastic transition matrix and emission matrix:
Theorem 5.3. For an HMM model with state space size n and observation space size m whose
entries in transition matrix and emission matrix are uniformly lower bounded by

√
cl, there exists

a T -precision Transformer approximating the belief state sequence of length T followed by an
MLP with O(log T ) layers and O(n) width. The ℓ∞ approximation error of the neural network is
O(exp(−T )). The Transformer has depth L = ⌈log2 T ⌉, embedding dimension 2n2 + 6, MLP width
4n3 + 2n2, and H = 2 attention heads.
Remark 5.4. Since any automaton can be formulated as an HMM (c.f., Appendix A.3), the hardness
results in Liu et al. (2022) also apply to our cases. That means there exists no log-precision
Transformers with depth independent of T and width polynomial in T that can approximate any
HMMs with O(1/poly(T )) error, unless TC0 = NC1 4 (Feng et al., 2023; Liu et al., 2022).

6 CONCLUSION

We study the effectiveness of Transformers in learning HMM models and its variants from both
theoretical and empirical perspective. Structured HMM models with different mixing speed are
constructed to assess the accuracy of belief state inference or next-observation prediction by Trans-
formers. We found a consistent underperformance of Transformers compared with RNN on all
HMMs, and even challenging HMMs that Transformers fail to learn but RNN can successfully fit.
Intuitively speaking, successful learning requires the HMM model to have either fast mixing speed
or sufficient supervision signal during the learning process. We also illustrated an approximate
logarithmic dependency between depth and fit length from both experiments and theory and tried the
block CoT technique to overcome the limitations.

4Both are circuit complexity classes. Their relationship is widely conjectured to be TC0 ⊂ NC1.
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A ADDITIONAL BACKGROUND AND DISCUSSION

A.1 THE TRANSFORMER ARCHITECTURE

Different from the standard encoder-decoder Transformer architecture introduced by Vaswani et al.
(2017), we employ the decoder-only Transformer in this paper to investigate its learnability of the
sequential models. The decoder-only Transformers are largely applied on sequential text generations
tasks, especially in large language models such as GPT-2 (Radford et al., 2019), GPT-4, LaMDA
(Thoppilan et al., 2022), LLaMA (Touvron et al., 2023), etc. Let Xinput ∈ RT×m be the input
sequence to the Transformer, where T is the sequence length and m is the input token dimension. The
first block of the Transformer model is a position-wise linear encoder layer ENCODER : Rm →
Rd mapping each token in Xinput from Rm to Rd, where d is the embedding dimension of the
Transformer. Let X(0) ∈ RT×d be the output of the linear encoder layer, it is then forwarded into L
attention blocks sequentially.

Each attention block consists of a self-attention layer with H attention head and a two-layer MLP
GeLU activated MLP. An implicit requirement for H is that H is a divisor of d (Vaswani et al., 2017).
Let the input of the l-th attention block be X(l−1) ∈ RT×d, it propagates through a self attention
layer Attn(l) at first, where

Attn(l)(X) = Concat

({
softmax

(
XW

(l,h)
Q

(
XW

(l,h)
K

)⊤
+M

)
XW

(l,h)
V W

(l,h)
O

}H

h=1

)
.

(A.1)

Here M ∈ {0,−∞}T×T is the causal mask matrix, which is defined as Mij = −∞ iff i < j. In
other words, the output of the self-attention layer is obtained by concatenating the outputs of all
the attention heads, where W

(l,h)
Q ,W

(l,h)
K ,W

(l,h)
V ∈ Rd×d and W

(l,h)
O ∈ Rd×(d/H) are the query,

key, value, and output matrix respectively. The output to the self-attention layer is linked with input
X(l−1) by a residual connection (He et al., 2016) Y (l−1) = X(l−1) +Attn(l)(X(l−1)). After the
self-attention layer, Y (l−1) is then forwarded into a 2-layer feedforward network (MLP) with a
residual connection as the output of the attention block:

FFN(l) (X) = σ
(
XW

(l)
1

)
W

(l)
2 ,X(l) = Y (l−1) + FFN(l)

(
Y (l−1)

)
. (A.2)

The final output sequence of the transformer is obtained by feeding X(L) ∈ RT×d into a position-wise
linear decoder layer DECODER.

We also add two LayerNorm layer right before the multi-head attention and the MLP, and feed the
final output to a LayerNorm layer as suggested by a pre-LN architecture (Baevski & Auli, 2018;
Wang et al., 2019; Xiong et al., 2020). The positional encoding is a learnable d-dim vector of length
256.

A.2 THE MIXING TIME

Different from Markov chains, we define the mixing time of an HMM (S,O,P,O, S0) as follows in
order to measure its difficulty in belief state inference and next-observation prediction tasks:

Tmix
def
= min

t

{
Eo0,...,ot max

µ1,µ2

∥Pr(St | o0, ..., ot, µ1)− Pr(St | o0, ..., ot, µ2)∥TV ≤ 1

10

}
,

where µ1, µ2 are two arbitrary initial distributions.

In the case of linear dynamical system, it is well known that E[xt] = ζrE[xt−r] + g0(yt−r+1:t) for
some function g0 and 0 < ζ < 1 when the system is controllable and observable (Kalman, 1960).
Therefore, we define the "mixing time" (i.e., the length of the lookback window that dominates E[xt])
to be ln(0.05)/ ln(ζ) w.l.o.g.

We estimate the mixing time of the constructed HMMs in Section 3 with 1M random trajectories and
5 seeds, which are summarized in the following table.
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Model RanHMM RanLDS CR-0.01 CR-0.03 CR-0.05 CR-0.1 CR-0.15
Mixing Time 1.6 3.12 120 69.4 42.2 21.4 14.2

Table 1: Average mixing time of the HMM. The CR-ϵ denotes a Cyclic-RND model with given
backward probability ϵ. The Cyclic-DET and Cyclic-HARD model do not have a stationary
distribution.

A.3 THE EQUIVALENCE BETWEEN MDP AND HMM

Consider a Markov decision process (MDP) with n states and m actions, let their state space and
action space be [n] and [m] respectively. The following proposition shows that the MDP is equivalent
to some HMM assuming the action at (note that the action of the MDP is the observation of the
HMM) is uniformly chosen at random for each step t by the following construction:

• The state space consists of all pairs (s, o) ∈ [n]× [m], while the observation space is the
action space [m] of the MDP.

• The transition probability is defined as P((s′, o′) | (s, o)) def
= Po(s

′, s)/m, where Po(s
′, s)

is the probability of transiting to state s′ from state s given action o.

• The emission probability is defined as O(o′ | (s, o)) def
= 1[o′ = o].

Proposition A.1. Given a For any t ≥ 0, the sampling probability of any trajectory
(s0, o1, s1, ..., ot, st) is identical for the constructed HMM and the MDP.

Proof. Given any (s0, o1, ..., ot, st), the probability that next observation ot+1 equals o in the HMM
is ∑

s′

Pot(s
′, st)

m
=

1

m
.

Therefore, the next observation distribution is a uniform distribution. On the other hand, the next state
st+1 follows the distribution Pot(·, st) according to the construction. Therefore, these two models
are equivalent for any t by induction.

As deterministic automata are also MDPs (Liu et al., 2022), the construction also applies for them.

A.4 THE BELIEF STATE INFERENCE TASK AND NEXT OBSERVATION PREDICTION TASK

Belief state inference. Assuming the size of the state space is n (i.e., |S| = n, the states are
numbered from 1 to n) for a given HMM, belief state inference aims at computing the belief state
bt ∈ Rn at step t given an observation sequence (o1, o2, ..., ot). The belief state bt is defined as the
posterior probability of the HMM being at each state given the observation sequence (o1, o2, ..., ot):
bt(s)

def
= Pr(st = s | o1, o2, ..., ot). It is easy to derive the following equation using Bayes’ rules

bt+1 =
diag(O(ot+1 | ·))Pbt

∥diag(O(ot+1 | ·))Pbt∥1
, (A.3)

where O(o | ·) = (O(o | 1), ...,O(o | n))⊤ ∈ Rn, diag(v) is the diagonal matrix generated by vector
v, and P ∈ Rn×n is the transition matrix with P(s′, s) = P(s′ | s) with a little abuse of notations.

Next-Observation prediction. Another fundamental task is to predict the distributions of the next
observation given the history of observations. Given belief state bt we have

Pr(ot+1 | o1, ..., ot) = OPbt. (A.4)

However, it is more realistic in the sense that the observations are convenient to access for an HMM
with unknown transition and emission probability, while the belief states are not.

A.5 MOTIVATIONS FOR THE CONSTRUCTED HMMS

We also dicuss our motivation for studying the HMMs and why we construct the HMMs in the main
text.
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Why studying HMM models? First, the investigation into the learnability of Transformers on
various HMMs holds intrinsic value due to the universality of HMM models. This is pointed out in
the introduction as the HMMs serve as useful tools for a wide range of practical problems such as
part-of-speech (Kupiec, 1992) and named-entity recognition (Zhou & Su, 2002) in NLP, time-series
forecasting (Zhang et al., 2019).

Furthermore, many real-world problems in control systems and reinforcement learning can be
abstracted into HMMs as their simplest instances. Understanding the capabilities and limitations of
Transformers in learning these models provides crucial insights that extend beyond HMMs themselves.
For instance, the partially observable Markov decision process (POMDP) model, which extends
HMMs by incorporating actions at each step, is a cornerstone in reinforcement learning. POMDPs are
typically used to model plenty of complex sequential decision-making tasks such as robot navigation,
fault detection, video game AI, etc. By investigating how Transformers perform on HMMs, we pave
the way for understanding their efficacy in tackling more complex problems like POMDPs (since
the HMMs are special cases of POMDPs). This is an important problem given the abundance of
research efforts aimed at devising efficient reinforcement learning algorithms for learning POMDPs
and their applications in various domains (see, e..g, Nguyen et al. (2020) for a survey of methods,
and Cassandra (1998) for a survey of applications).

Why constructing the specific HMMs in the main text? The HMMs can be divided into two
types: random instances and structured instances. The RanHMM and RanLDS are random instances
chosen as they represent a natural starting point for exploring Transformers’ learning capabilities on
HMMs. Notably, the successful learning of these random instances by constant-layer Transformers
suggests that HMMs lacking specific structures are relatively easy for Transformers to learn, which is
because random instances have a very small mixing time (c.f. Appendix A.2).

It then inspires us to study how the mixing time of the HMM related to the performance of the
Transformers. Therefore, we construct the aperiodic HMM instance Cyclic-DET , which requires
the Transformers to consider all previous tokens to predict the next token, instead of only checking the
latest ones as in the random instances (i.e., it has a long credit assignment length). The Cyclic-RND
model further enables us to adjust the mixing time of the HMMs and verify the scaling between
mixing time and the performance of HMMs.

In order to study the difference between belief state inference and next observation prediction tasks
on non-mixing models, we constructed the Cyclic-HARD model. The core difference between
Cyclic-HARD model and Cyclic-DET model is that belief state inference provides intermediate
belief state as supervision signal while next observation prediction does not. The results show that it
is crucial for the Transformers to have intermediate supervision signals.

Lastly, we also construct a generalization of HMMs for the application in physics or math–the
MatMul model. The results align well with the HMMs.

B DETAILS OF EXAMPLES OF THE CONSTRUCTED HMM MODELS

In this section, we provide additional details and a running example based on Figure 1 of the
Cyclic-DET , Cyclic-RND , Cyclic-HARD model constructed in Section 3.

According to Figure 1, the core design of the Cyclic-DET is a 4-state MDP M with 2 actions (Left
of Figure 1). This MDP M can be transformed into an HMM H with 8 states and 2 observations
according to Proposition A.1. The states of H are {(si, ak)|i ∈ {1, 2, 3, 4}, k ∈ {1, 2}}, where si
are the states of M and ak are the actions of M. With a little abuse of notation, we denote the
observation space of H to be {a1, a2}, the same as the action space of M.

Denote the initial belief state of H by b0, where b0((s1, a1)) = b0((s1, a2)) = 1/2. Since the hidden
state (si, ak) always emits the observation ak, the first observation o0 emitted by the initial state
can be a1, a2 with equal probability. Assume o0 = a1 (resp. o0 = a2), the next state in H must
be (s2, a1) or (s2, a2) (resp. (s3, a1) or (s3, a2)) according to the belief state update formula (A.3).
The probability of these two states are both equal to 1/2, and the emission probability of o1 is also
a uniform distribution over {a1, a2}. Following this procedure, it is easy to observe that the state
distribution of M is always equal to the marginal distribution of si over states of H.
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The only difference for the Cyclic-RND model is that the MDP for the Cyclic-RND model adds
a slightly "backward" probability given a state and an action (c.f. Section 3.2). It can be shown that
the state distribution of the MDP is still the same as the marginal distribution of si of the HMM.

Now we explain the HMM Cyclic-HARD . The first stage of the Cyclic-HARD model is exactly
a Cyclic-DETmodel except for the α-probability of entering stage 2. Suppose the Cyclic-HARD
model has run t steps without entering stage 2 (i.e., the Cyclic-DET model has run t steps) with
observation sequence o0, ..., ot, then the state st can be decoded from taking action o0, ..., ot in
order on M. The state distribution of the Cyclic-DET model is bt((st, a1)) = bt((st, a2)) = 1/2.
According to the construction of the Cyclic-HARD model, the state distribution of Cyclic-HARD
model is bt((st, a1, 0)) = bt((st, a2, 0)) = 1/2.

Then the Cyclic-HARD model enters stage 2, with the next state distribution being
bt+1((st, a1, 1)) = bt+1((st, a2, 1)) = 1/2 since the state st does not change. The observation
ot+1 is a special character * to notify the entrance of stage 3. Afterwards, it enters stage 3 with
bt+2((st, a1, 2)) = bt+2((st, a2, 2)) = 1/2 and a deterministic observation st at this step. The
learner is asked to predict the observation st for the observation prediction task.

C DETAILS OF EXPERIMENTS

Training. The training data consists of Ntrain = 5 × 106 trajectories rolled out from the same
random instance for each task. We change Ntrain to 106 for the simplest task RanHMM , RanLDS ,
and the block CoT training to save the computation time. The input data is the observation sequence
(o0, ..., oT ) of length T +1 (o0 is a placeholder symbol) concatenated by a 3-dim positional encoding
(sin(πt/4T ), cos(πt/4T ), 1) at position t. The target data is the belief state of length T +1 for belief
state filtering tasks or next observation sequence of length T for next-observation prediction tasks. In
epoch l, the training loss is computed as

1

Tl
·

Tl∑
t=0

L (x̂t, xt) , (C.1)

where x̂t is the output of the neural network given (o0, ..., ot), xt is the training label, L is the loss
function, and Tl ≤ T is the training sequence length at epoch l. L is chosen as the MSE loss for
MatMul and RanLDS , and chosen as the cross entropy loss for other tasks. The training sequence
length Tl is T if curriculum training is disabled, and set according to the curriculum stage if it is
toggled on.

Tasks. Although the combination of belief state filtering problem and observation prediction
problem with each HMM is possible, many of them are trivial. For example, predicting the next
observation distribution in MatMul , Cyclic-DET , and Cyclic-RND is trivial since it follows a
uniform distribution. Generally speaking, predicting the belief state is harder than predicting the next
observation distribution since the latter is a linear mapping of the former. Importantly, we assume the
access to belief states (should be hidden) at each step as training labels in the belief state filtering
problem, but the next-observation prediction problem does not have access to the hidden belief states.
Therefore, the belief state filtering problem in the paper provide much more hidden information
during training than observation prediction. For the Cyclic-HARD model, we use Cyclic-DET
to construct the first stage of Cyclic-HARD instead of Cyclic-RND to reduce the number of
states. The instance used for training and evaluation is randomly generated but keep fixed for all the
neural networks. The state dimension (or number of states if it is discrete) and observation dimension
(or number of observations if it is discrete) are both 5 for Cyclic-DET , MatMul , RanLDS ,
RanHMM model, and constructed accordingly for Cyclic-RND and Cyclic-HARD model. The
initial state is the first state for all tasks. We choose the parameter α = 1/T for Cyclic-HARD and
ε = 0.01 for Cyclic-RND model.

Evaluation. The evaluation stage is at the end of each epoch. E = 256 trajectories are rolled out
freshly, and the neural networks are fed in the sequences to do the prediction. The evaluation loss is
at step t is ∥x̂t − xt∥p/(3− p) where p = 2 for MatMul and RanLDS , and p = 1 for others (i.e.,
total variation distance). The reported evaluation loss is the average over E trajectories.
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Curriculum Training. We employ a double schedule for curriculum training for Transformers (no
curriculum training for RNNs). For an l-layer Transformer, we choose 8− l curriculum stages and
set the length of each stage to be ⌊100/(8− l)⌋ epochs. The training sequence length of the first
stage is 2l, and doubled immediately after ⌊100/(8− l)⌋ epochs.

Block Chain-of-Thought. The b block CoT training feeds the output of the Transformer back
into it every b steps. For the belief state filtering tasks, the output is the predicted belief state at
current step. Therefore, the necessary computation depth is reduced from T to b if the prediction
is approximately correct. For the observation prediction task, the output is the distribution of the
next observation conditioned on current observation sequence E[ot+1 | o0, ..., ot]. This conditional
distribution may be highly correlated with the hidden belief state bt (such as the prediction stage of
Cyclic-HARD ), or be irrelevant with the hidden belief state (such as the Cyclic-RND model). A
measurement of such “correlation" is called the observability of the HMM (Golowich et al., 2022).
The block CoT also works for observation prediction task with good observability (i.e., the correlation
is strong), since the hidden state can be (approximately) inferred from the observation distribution.
Since the observability of the first stage of Cyclic-HARD model is very bad, the Cyclic-HARD
model cannot be resolved by block CoT training.

Theoretically speaking, the value of b can be determined by the fit length of the Transformers, if the
error rate is ignored. In reality, the prediction error at early steps will accumulate to later steps and so
we have to choose a smaller value than ϵ-fit length if we hope to reduce the evalution loss below ϵ.
We choose the half of the ϵ-fit length in our experiments.

The averaged training time of different block sizes on MatMul and Cyclic-DET are listed in Table
2. The time cost of b-block CoT is approximately 1/b of that of vanilla CoT.

block length 1 block length 8 block length 12 no block CoT
MatMul 4838 608 390 94

Cyclic-DET 4828 620 393 94

Table 2: Training time (in seconds) per epoch of block CoT for different tasks of length 60 on 4
GPUs. We choose the 3-layer Transformer for both tasks.

C.1 HYPERPARAMETERS AND PACKAGES

The RNN models is employed from pytorch directly with embedding dimension 64, and number of
layers 1. The Transformer model has embedding dimension 512, number of heads 8, MLP layer 2
with GeLU activation, and drop out rate 0.1. The optimizer is AdamW (Loshchilov & Hutter, 2017)
with default parameters in pytorch. The initial learning rate for both models are 1e-3, and decays by
a factor of 0.5 every 20 epochs. We adopt the learning rate warmup procedure (Xiong et al., 2020) to
warmup the learning rate from 1e-7 to 1e-3 with a linear increasing for 4000 optimization steps.
The batch size is chosen from 256, 512, or 1024 depending on the layers of the Transformers, and
256 for RNN.

We also conducted ablation study to determine the best hyperparameters (e.g., the embedding
dimension, the number of heads) of the Transformers and reduce variance of the training process. A
brief illustration in terms of the embedding dimension and the number of heads is shown in Figure 5.
The curves are drawn from multiple seeds and multiple layers with shaded area as 95% confidence
interval. We choose the best configuration for the remaining of the tasks.

C.2 BENEFITS OF CURRICULUM TRAINING

Besides saving lost of training time, curriculum training also helps warm-up the model, so as to
accelerate the training as well as the final performance. Figure 6 shows the convergence speed and
final value of fit length would be better with curriculum training.

C.3 THE POSSIBILITY OF OVERFITTING

In order to verify whether the large Transformers overfit the training data, we listed the training loss
at the end of the last epoch of Transformers and RNNs in Table 3 (“w. CT" means with curriculum
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Figure 5: The evaluation loss at the end of training for different embedding dimension and number of
heads for Transformers.

Figure 6: The benefits of curriculum training. Left: The 0.1-fit length of Transformers with different
depth, reported as the best of 2 experiments with different seed. The fit length of curriculum training
is comparable with vanilla training in Cyclic-DET in general, and better than vanilla training
in MatMul. Right: The convergence speed for different Transformers on MatMul model. The
convergence of 0.1-fit length for curriculum training is consistently faster than vanilla training.

training). From the table, we know the fitting ability of Transformers on the MatMul , Cyclic-DET
, and Cyclic-RND model is much worse than RNNs due to the sequential nature of HMMs. For
the fast-mixing models RanHMM and RanLDS , the performance of the RNNs and Transformers are
comparable since the predicting these models only require a short memory.

C.4 THE FAILURE CASE OF 7-LAYER TRANSFORMERS

We conjecture the failure of a 7-layer Transformer to fit the MatMul task primarily due to some
optimization issues, and it requires a longer training process to tackle the issue. It can be observed
from the experiments that the training loss converges much slower for MatMul than other tasks from
Table 4. We have tried various tricks such as different curriculum scheduling, smaller training dataset,
different warmup epochs, different learning rate, but they all fail to address the issue.

C.5 IMPLEMENTATIONS AND RESOURCES

The RNN and Transformer are implemented with Pytorch from scratch. Each of the experiments
are trained on 4 NVIDIA GeForce RTX 4090 GPUs for 2-20 hours, where a single worker runs
on each GPU.
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Task Model Final training loss
MatMul RNN 2.3475× 10−6

TF (L = 5) 0.10927
TF (L = 5), w. CT 0.09885

TF (L = 6) 0.11073
TF (L = 6), w. CT 0.10999

Cyclic-DET RNN 2.2662× 10−7

TF (L = 5) 0.67059
TF (L = 5), w. CT 0.76278

TF (L = 6) 0.68182
TF (L = 6), w. CT 0.77835

Cyclic-RND RNN 3.7769× 10−6

TF (L = 5) 1.24707
TF (L = 6) 1.13770

RanHMM RNN 1.40139
TF (L = 2) 1.40107

RanLDS RNN 2.58242
TF (L = 2) 2.61545

Table 3: The final training loss of different models on different tasks.

Epoch 60 70 80 90 100 125 150 175 200
Cyclic-DET 0.014 0.006 0.004 0.005 0.003 N/A N/A N/A N/A
Cyclic-RND 1.506 1.503 1.503 1.502 1.503 N/A N/A N/A N/A

MatMul 0.1069 0.0999 0.0969 0.0934 0.0916 0.0894 0.0885 0.0875 0.0870

Table 4: The training loss of 3 tasks of 7-layer Transformers. The total epochs for MatMul is
increased to 200. The training for Cyclic-DET and Cyclic-RND have already converged at
the end of epoch 100 (note that the loss for Cyclic-RND is larger due to the randomness and we
implement an augmented HMM constructed in Appendix A.3). The training for MatMul converges
much slower than the other two tasks.

D TECHNICAL LEMMAS

D.1 USEFUL LEMMAS FOR MLP

First of all, it is ensured that an MLP with GeLU activation can approximate a scalar product.
Lemma D.1 (Lemma C.1 of Feng et al. (2023)). Let f : R2 → R be a two-layer MLP with GeLU
activation with 4 hidden neurons at the second layer. For any ϵ > 0 and M > 0, there exist a set
parameters of f such that |f(a, b)− ab| ≤ ϵ for all a, b ∈ [−M,M ]. The ℓ∞ norm of the parameters
are bounded by O(poly(M, 1/ϵ)).

It is straightforward to show that a two-layer MLP can simulate a matrix multiplication with Lemma
D.1.
Lemma D.2. Given two matrices A,B ∈ Rn×n, let the vector vec(X) ∈ Rn2

be the vectorization
of matrix X . There exists a two-layer MLP g : R2n2+1 → Rn2

with 4n3 hidden neurons and GeLU
activation such that for any input vector [vec(A), vec(B), 1] ∈ R2n2

with ∥A∥F ≤ M − n, ∥B∥F ≤
M , it holds that ∥g([vec(A), vec(B)]) − vec((A − I)B)∥∞ ≤ ϵ. The ℓ∞ norm of the parameters
are bounded by O(poly(M,n, 1/ϵ)).

Proof. According to the matrix multiplication formula, it suffices to compute all the scalar product
(A− I)ikBkj for 1 ≤ i, j, k,≤ n at the hidden layer, the total number of which is n3. The output
layer can be used to gather these products to the desired output vec((A−I)B). For a positive number
ϵ′ > 0, the constructed MLP f in Lemma D.1 is

f(a, b) =

√
2πλ2

8

(
σ

(
a+ b

λ

)
+ σ

(
−a− b

λ

)
− σ

(
a− b

λ

)
− σ

(
−a+ b

λ

))
, (D.1)
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where 0 < λ ≲ M3/ϵ′, and σ is the GeLU activation.

Therefore, we can compute and store

uijk
def
=

(
σ

(
(A− I)ik +Bkj

λ′

)
, σ

(
−(A− I)ik −Bkj

λ′

)
, σ

(
(A− I)ik −Bkj

λ′

)
, σ

(
−(A− I)ik −Bkj

λ′

))
∈ R4

using the 4n3 hidden neurons of g for all i, j, k.

By choosing an appropriate λ′ = O(poly(M, 1/ϵ′)), a single neuron at the output layer of g
approximate

∑n
k=1(A−I)ikBkj with ℓ∞ error nϵ′ by a linear combination of all entries of {uijk}nk=1.

It implies ∥g([vec(A), vec(B)]) − vec((A − I)B)∥∞ ≤ nϵ′. The theorem is proved by choosing
ϵ′ = ϵ/n.

The next lemma shows that two-layer MLPs with GeLU activation and ReLU activation are equivalent.
Lemma D.3 (Lemma C.2 of Feng et al. (2023)). Given ϵ > 0, for any two-layer MLP f with GeLU
activation with parameter scale bounded by M , there exists a two-layer MLP g with ReLU activation
of the same size such that for any x it holds that ∥f(x) − g(x)∥∞ ≤ ϵ. The parameters of g is
bounded by O(poly(M, 1/ϵ)).

D.2 SOFTMAX TO APPROXIMATE HARD MAXIMUM

The following lemma quantifies the error of using softmax to approximate hard max in an n-
dimensional vector.
Lemma D.4 (Lemma 4 of Liu et al. (2022)). Suppose z ∈ Rn, the softmax : Rn → Rn function
transforms z into

softmax(z)i =
ezi∑n
j=1 e

zj
. (D.2)

Let t∗ def
= argmaxt zt, and suppose for any t ̸= t∗ it holds that zt ≤ zt∗ − γ, then

∥softmax(z)− et∗∥1 ≤ 2ne−γ . (D.3)

D.3 SINUSOIDAL POSITIONAL ENCODING

Lemma D.5. For any 0 ≤ α < α+ π/4T ≤ β < π/4, it holds that

cos(α)− cos(β) ≥ π2

32T 2
. (D.4)

Proof. Define fα,β(x)
def
= cos(x) − cos(x + β − α) for 0 ≤ x ≤ π/4, then fα,β(0) ≥ π2/32T 2

given that fact that cosx ≤ 1− x2/2.

Since f ′
α,β(x) = sin(x+ β − α)− sin(x) ≥ 0, it is proved that

fα,β(α) = cos(α)− cos(β) ≥ fα,β(0) ≥
π2

32T 2
. (D.5)

D.4 ROBUST MATRIX MULTIPLICATION

Lemma D.6. Given two matrices A,B ∈ Rn×n and their approximation Â, B̂ ∈ Rn×n such that

∥ vec
(
A− Â

)
∥∞ ≤ α, ∥ vec

(
B − B̂

)
∥∞ ≤ β. (D.6)

Then it holds that

∥ vec
(
AB − ÂB̂

)
∥∞ ≤ α

∥∥∥B̂∥∥∥
1
+ β ∥A∥∞ . (D.7)

The proof to this lemma is elementary.
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E PROOF OF MAIN THEORETICAL RESULTS

E.1 PROOF OF THEOREM 5.1

For any deterministic HMM (S,O,P,O, S0), the belief state bt at any step t ≥ 0 is guaranteed to be
a one-hot vector. Therefore, it almost reduces to an MatMul model with Ao

def
= P for all o ∈ O. The

only difference is that Ao is now a deterministic transition matrix instead of an orthogonal matrix,
which is negligible to the approximation of the MatMul model for both RNNs and Transformers
(because Ao keeps the ℓ2 norm of an one-hot vector). The state dimension of this MatMul model
is n, and the observation space size of it is m. Now we show how to approximate the output of an
MatMul model.

Recall the updating rule of MatMul model (c.f. Section 3.3):
st+1 = Aot+1

st. (E.1)

s0 is fixed and AoA
⊤
o = I for any o ∈ O.

The RNN updating rule is
ht = ReLU (Wixt + bi +Whht−1 + bh) . (E.2)

Define the following sequence h̄t ∈ Rn such that

h̄t+1 =

m∑
o=1

ReLU
(
Aoh̄t + α1e⊤o eot+1

− α

2
1
)
− α

2
1, (E.3)

where h̄0 = s0 and α > 2maxo∈O,1≤t≤T ∥Aoh̄t∥∞. We will prove that h̄t = st for all 0 ≤ t ≤ T .

Leveraging a inductive argument, suppose it is known that st = h̄t. It holds that

ReLU
(
Aoh̄t + α1e⊤o eot+1

− α

2
1
)
=

{
Aoh̄t + α1/2 if o = ot+1

0 otherwise.
(E.4)

Then h̄t+1 = st+1 due to h̄t = st.

Next we construct an RNN that implements (E.3) with d = nm. Let ht ∈ Rd be the hidden state at
step t, we write ht as

ht =
[
h⊤
t,1, h

⊤
t,2, ..., h

⊤
t,m

]⊤
, (E.5)

where ht,i ∈ Rn for any t, i. Suppose for step t ≥ 1 we have

ht,i = ReLU
(
Aih̄t−1 + α1e⊤i eot −

α

2
1
)

(E.6)

and as inductive hypothesis. Since h̄t =
∑m

o=1 ht,o − α1/2, then it is straightforward to construct
weight matrix Wh ∈ Rd×d and bias bh ∈ Rd so that

Whht + bh =
[
A1h̄t, A2h̄t, ..., Amh̄t

]
. (E.7)

Moreover, we choose Wi ∈ Rd×n and bi ∈ Rd such that

Wixt+1 + bi = α
[
1e⊤1 eot+1

,1e⊤2 eot+1
− α

2
, ...,1e⊤meot+1

]
− α

2
1d (E.8)

since xt+1 = eot+1 . Therefore, it holds that

ht+1,i = ReLU
(
Aih̄t + α1e⊤i eot+1 −

α

2
1
)
, (E.9)

which indicates that (E.6) holds for any t ≥ 1 as long as it holds for t = 1.

When t = 1, we shall construct h0 so that (E.6) holds for t = 1 with the constructed parameters by
(E.7) and (E.8), which is true as long as h̄0 =

∑m
o=1 h0,o − α1/2. Therefore, we can simply choose

h0 as

h0 =
[
s0 −

α

2
1n,0n, ...,0n

]
. (E.10)

The only remaining problem now is to determine the value of α. Since ∥Aoh̄t∥∞ ≤ ∥Aoh̄t∥2 =
∥Aost∥2 = ∥st∥2 = ∥s0∥2, it suffices to choose α = 4∥s0∥2.
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E.2 PROOF OF THEOREM 5.2

It suffices to consider an MatMul model with state dimension n and observation space size m
according to the first paragraph of E.1.

Denote the constructed L-layer (decoder-only) Transformer as T , which has embedding dim d =
2n2 + 6, (2-layer) MLP width 4n3 + 2n2, and H = 2 attention heads. Let us recall the forwarding
architecture of T . Given the (one-hot) input sequence (o1, o2, ..., oT )⊤ ∈ RT×m, we first transforms
it into an augmented input sequence Xinput ∈ R(T+1)×(m+4) before feeding it into T . This is
achieved by adding an extra token to the input from the beginning modifying the input sequence to be
(o0, o1, ..., oT )

⊤ ∈ R(T+1)×(m+1), where o0 = em+1 is a specially token marking the beginning of
the sequence. Motivated by Liu et al. (2022), we concatenate a 3-dimensional sinusoidal positional
encoding at each position to form the Xinput as

Xinput =


o⊤0 , sin

(
π·0
4T

)
, cos

(
π·0
4T

)
, 1

...
o⊤i , sin

(
πi
4T

)
, cos

(
πi
4T

)
, 1

...
o⊤T , sin

(
π
4

)
, cos

(
π
4

)
, 1

 . (E.11)

In the rest of the proof, we will give a brief summary of construction at first, and leave the technical
details as the last part of the proof.

Brief construction. Feeding Xinput into the T , it will be transformed into an embedding sequence
X(0) ∈ R(T+1)×d by a linear encoding layer, where d is the embedding dimension of T . Choosing
d = 2n2 + 6, the encoding layer is constructed so that

X(0) =


...

0n2

, 0, 0, 0, vec (Λi,0) , sin
(
πi
4T

)
, cos

(
πi
4T

)
, 1

...

 , (E.12)

where Λi,0
def
= Aoi for 0 ≤ i ≤ T and Ao0 = In. Assume all the operations have no approximation

error, we show that the output of the l-th (l ≥ 1) attention block of T is

X(l) =


...

0n2

, 0, 0, 0, vec (Λi,l) , sin
(
πi
4T

)
, cos

(
πi
4T

)
, 1

...

 , (E.13)

where Λi,l
def
= Amax(i−2l+1,0):i for l ≥ 0 and Λi,l

def
= I for l < 0. Recall that Ai:j =

∏j
k=i Aok .

Suppose this is true for X(l−1), we now prove this induction for layer l assuming no approximation
error. Recall the l-th self-attention layer processes as

Attn(l)(X(l−1)) = Concat

({
softmax

(
X(l−1)W

(l,h)
Q

(
X(l−1)W

(l,h)
K

)⊤
+M

)
X(l−1)W

(l,h)
V W

(l,h)
O

}H

h=1

)
,

(E.14)

where W
(l,h)
Q ,W

(l,h)
K ,W

(l,h)
V W

(l,h)
O are query, key, value, output matrices of the h-th head.

For the first attention head h = 1, we construct matrix W
(l,1)
Q so that

X(l−1)W
(l,1)
Q = γ ·


...

sin
(

π(i−2l−1)
4T

)
, cos

(
π(i−2l−1)

4T

)
...

 ∈ R(T+1)×2. (E.15)
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The W
(l,1)
K matrix is constructed to form

X(l−1)W
(l,1)
K = γ ·


...

sin
(
πi
4T

)
, cos

(
πi
4T

)
...

 ∈ R(T+1)×2. (E.16)

In this way, we can choose an appropriate value of γ to ensure the attention mask matrix of the first
attention head is approximately

softmax

(
X(l−1)W

(l,1)
Q

(
X(l−1)W

(l,1)
K

)⊤
+M

)
=


...

λ⊤
i,l
...

 ∈ R(T+1)×(T+1), (E.17)

where λi,l
def
= emax(i−2l−1,0) ∈ R(T+1). The value of γ is chosen as

γ =
4
√
2T log(2T/η)

π
, where η =

1

(8n)L+1 · T
(E.18)

As a result, the output of the first attention head H(l,1) ∈ R(T+1)×(d/2) will be approximately

H(l,1) =


...

vec
(
Λmax(i−2l−1,0),l−1

)
, 0, 0, 0

...

 (E.19)

by constructing appropriate value and output matrices.

For the second head h = 2, we simply produce a all-zero matrix H(l,2) = 0(T+1)×(d/2). The final
output of the attention layer Y (l−1) ∈ R(T+1)×d is produced by concatenating the output of two
attention heads plus a residual connection:

Y (l−1) = X(l−1) +
[
H(l,1),H(l,2)

]
(E.20)

=


...

vec
(
Λmax(i−2l−1,0),l−1

)
, 0, 0, 0, vec (Λi,l−1) , sin

(
πi
4T

)
, cos

(
πi
4T

)
, 1

...

 . (E.21)

The construction of the 2-layer MLP at the end of the l-th attention block will be divided into two parts.
First of all, we use 4n3 hidden neurons to compute (Λmax(i−2l−1,0),l−1 − In)Λi,l−1 = Λi,l −Λi,l−1

according to Lemma D.2. Then a simple 2-layer ReLU network with 2n2 hidden neurons can flip the
sign of the first n2 entries of the input Y (l−1), which we can use a GeLU network with the same size
to simulate according to Lemma D.3. The output of the MLP is

FFN(l)(Y (l−1)) =


...

− vec
(
Λmax(i−2l−1,0),l−1

)
, 0, 0, 0, vec (Λi,l − Λi,l−1) , 0, 0, 0

...

 ∈ R(T+1)×d.

(E.22)

Finally, the output of the l-th attention block is

Y (l−1) + FFN(l)(Y (l−1)) =


...

0n2

, 0, 0, 0, vec (Λi,l) , sin
(
πi
4T

)
, cos

(
πi
4T

)
, 1

...

 = X(l), (E.23)

which proves the induction of (E.13).
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Without approximation error, the output of the last attention block X(L) is

X(L) =


...

0n2

, 0, 0, 0, vec (Λi,L) , sin
(
πi
4T

)
, cos

(
πi
4T

)
, 1

...

 , (E.24)

where Λi,L = A0:i since L = ⌈log2 T ⌉. A final linear decoder layer transformers X(L) to the desired
output sequence

(b1, b1, ..., bT ) = (A0:1b0, A0:2b0, ..., A0:T b0) . (E.25)

The self-attention layer. We still assume no approximation error in the sequel. According to the
expression of X(l−1) ∈ R(T+1)×d in (E.13), the query matrix W

(l,1)
Q ∈ Rd×2 is constructed as

W
(l,1)
Q = γ ·



0 0
...

...
cos
(

π2l−1

4T

)
sin
(

π2l−1

4T

)
− sin

(
π2l−1

4T

)
cos
(

π2l−1

4T

)
0 0

 (E.26)

according to the sine/cosine difference formula. The construction of W (l,1)
K is straightforward.

As a result, the attention mask matrix is

M
(l)
ij

def
=

[
X(l−1)W

(l,1)
Q

(
X(l−1)W

(l,h)
K

)⊤]
ij

= γ2 cos

(
π(j − i+ 2l−1)

4T

)
(E.27)

for j ≤ i. The entry for j > i is obviously −∞ since M is the causal mask. The i-th row of this
matrix is

γ2

[
cos

(
π(−i+ 2l−1)

4T

)
, cos

(
π(1− i+ 2l−1)

4T

)
, ..., cos

(
π2l−1

4T

)
,−∞, ...

]
. (E.28)

Since 0 ≤ i, 2l−1 ≤ T , the maximum value is take at position i− 2l−1 if i− 2l−1 ≥ 0, and position
0 otherwise. Choosing

γ =
4
√
2T log(2T/η)

π
, (E.29)

the softmax of this row would be λi,l = emax(i−2l−1,0) with ℓ1 error η according to Lemma D.5 and
Lemma D.4.

Finally, it suffices to use matrix W
(l,1)
V = I and W

(l,1)
O ∈ Rd×(d/2) by

X(l−1)W
(l,1)
V W

(l,1)
Q =


...

vec (Λi,l−1) , 0, 0, 0
...

 (E.30)

to produce the output H(l,1) of the first attention head.

The approximation error. The approximation error of T needs to be bounded carefully in order to
prove the O(poly(1/T )) total ℓ∞ error due to the exponential propagation over layers. We assume
the number of states n is a constant in the proof.

There are three places in the construction introducing approximation error:

• The softmax operation to the attention mask matrix (E.28). Let

softmax
(
M̂ (l)

)
def
=


...

λ̂⊤
i,l
...

 ∈ R(T+1)×(T+1) (E.31)
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be the exact output of the softmax attention mask matrix in T , then ∥λ̂i,l − λi,l∥1 ≤ η for
any i, l according to Lemma D.5, D.4 and the choice of γ (c.f. (E.18)).

• The matrix multiplication operation performed by the MLP, which is the place error may
propagate over layers. Let X̂(l) be the exact output of T after l-th attention block, then

X̂(l) =


...

ε̂i,l, 0, 0, 0, vec
(
Λ̂i,l

)
, sin

(
πi
4T

)
, cos

(
πi
4T

)
, 1

...

 . (E.32)

Here the matrix Λ̂i,l may not equal to Λi,l due to the approximation error of the MLP.

• The last occurrence of the approximation error is ε̂i,l ∈ Rn2

. This term is supposed to be 0
in our construction, which would be the case if our MLP uses ReLU as activation. According
to Lemma D.3, it holds that ∥ε̂i,l∥∞ ≤ η for any i, l as long as we use our GeLU MLP
to simulate the ReLU MLP with parameters bounded by O(poly(1/η)) = O(poly(T ))
according to (E.18).

Now we analyze the error propagation in a single attention block. Suppose at the beginning of the
l-th attention block we have ∥ vec(Λi,l−1 − Λ̂i,l−1)∥∞ ≤ ϵl−1 for all 0 ≤ i ≤ T , so ϵ0 = 0.

The first place introducing the error is the output of the first attention head H(l,1) in (E.19). The
exact output Ĥ(l,1) of the Transformer T is

Ĥ(l,1) = softmax
(
M̂ (l)

)
X̂(l−1)W

(l,1)
V =


...

λ̂⊤
i,l
...

 ·


...

vec
(
Λ̂i,l−1

)
, 0, 0, 0

...

 . (E.33)

The approximation can then be decomposed as

Ĥ(l,1) −H(l,1) = softmax
(
M̂ (l)

)(
X̂(l−1)W

(l,1)
V −X(l−1)W

(l,1)
V

)
(E.34)

+
(
softmax

(
M̂ (l)

)
− softmax

(
M (l)

))
X(l−1)W

(l,1)
V . (E.35)

Elementary inequalities show that∥∥∥vec(Ĥ(l,1) −H(l,1)
)∥∥∥

∞
≤ max

0≤i≤T

(∥∥∥λ̂i,l

∥∥∥
1
· max
0≤j≤T

∥∥∥vec(Λ̂j,l−1 − Λj,l−1

)∥∥∥
∞

)
(E.36)

+ max
0≤i≤T

(∥∥∥λ̂i,l − λi,l

∥∥∥
1
· max
0≤j≤T

∥vec (Λj,l−1)∥∞

)
(E.37)

≤ (1 + η)ϵl−1 + η. (E.38)

The second inequality follows from the definition of ϵl−1, ∥λ̂i,l − λi,l∥1 ≤ η, and the fact that Λj,l−1

is an orthogonal matrix.

Write Ĥ(l,1) as

Ĥ(l,1) =


...

ĥi,l ∈ Rn2

, 0, 0, 0
...

 . (E.39)

It is shown by (E.38) that ∥ vec(Λmax(i−2l−1,0),l−1)− ĥi,l∥∞ ≤ (1 + η)ϵl−1 + η.

The input to the MLP in T is

Ŷ (l−1) = X̂(l−1) +
[
Ĥ(l,1),H(l,2)

]
=


...

ε̂i,l−1 + ĥi,l, 0, 0, 0, vec
(
Λ̂i,l−1

)
, sin

(
πi
4T

)
, cos

(
πi
4T

)
, 1

...

 .

(E.40)
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The MLP at layer l implements an approximate matrix multiplication on the matrix reshaped by
ε̂i,l−1 + ĥi,l − In and Λ̂i,l−1. Now that∥∥∥vec (Λmax(i−2l−1,0),l−1

)
− ĥi,l − ε̂i,l−1

∥∥∥
∞

≤ (1 + η)ϵl−1 + 2η,
∥∥∥vec(Λi,l−1 − Λ̂i,l−1

)∥∥∥
∞

≤ ϵl−1

(E.41)

we have∥∥∥vec (Λi,l − Λi,l−1)− vec
(
Λ̂i,l − Λ̂i,l−1

)∥∥∥
∞

≤ ((1 + η)ϵl−1 + 2η)
(
nϵl−1 +

√
n
)
+

√
nϵl−1

(E.42)

≤ (1 + η)nϵ2l−1 +
(
(1 + η)

√
n+ 2ηn+

√
n
)
ϵl−1 + 2η

√
n,

(E.43)

which implies∥∥∥vec(Λi,l − Λ̂i,l

)∥∥∥
∞

≤ (1 + η)nϵ2l−1 +
(
(1 + η)

√
n+ 2ηn+

√
n+ 1

)
ϵl−1 + 2η

√
n. (E.44)

Define ϵl
def
= maxi ∥ vec(Λi,l − Λ̂i,l)∥∞, then the sequence ϵl satisfies

ϵl ≤ (1 + η)nϵ2l−1 +
(
(1 + η)

√
n+ 2ηn+

√
n+ 1

)
ϵl−1 + 2η

√
n. (E.45)

Thanks to the construction of η in (E.18), we prove by induction that ϵl ≤ (8n)l−L · T−1, which is
obvious when l = 0. Suppose this is true for l − 1, then

ϵl ≤ (1 + η)nϵ2l−1 +
(
(1 + η)

√
n+ 2ηn+

√
n+ 1

)
ϵl−1 + 2η

√
n (E.46)

≤ (1 + η)nϵl−1 +
(
(1 + η)

√
n+ 2ηn+

√
n+ 1

)
ϵl−1 + 2η

√
n (from ϵl−1 < 1)

(E.47)
≤ 4n(1 + η)ϵl−1 + 2ηn (from n ≥ 1)

(E.48)
≤ 6nϵl−1 + 2ηn (E.49)

≤ 1

(8n)L−l · T

(
3

4
+ 2ηnT · (8n)L−l

)
(from the induction hypothesis)

(E.50)

≤ 1

(8n)L−l · T

(
3

4
+

1

4

)
(from the definition of η)

(E.51)

≤ 1

(8n)L−l · T
. (E.52)

This inductive argument shows that ϵL = 1/T = O(poly(1/T )). Moreover, the parameters of T are
all bounded by O(poly(T, n)) from the choice of η and γ.

E.3 PROOF OF THEOREM 5.3

The Transformers constructed here is slightly different from the ones constructions in Theorem 5.2 in
that we choose a different η (recall that the Transformers now has T -precision):

η =
1

(8n)L+1 · exp(4T )
.

Recall that b̃t = A1:tb0, then from the same analysis as (E.46) to (E.52) we know that the output
of the last attention block can be regrouped to vectors b̂t such that ∥b̂t − b̃t∥∞ = O(exp(−4T )). It
then remains to normalize the vector b̂t to have 1 ℓ1 norm.

Next we consider how to normalize the vector b̂t by a O(log T )-layer MLP with width O(n). The
MLP is divided into two parts to achieve the following goals:

1. Find a multiple c0 such that 1/2 ≤ ∥c0b̂t∥1 ≤ 1;

2. Divide the vector c0b̂t by its ℓ1 norm.
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Finding the multiple c0. Let Cl
def
= 1/cl > 1. On the n-dimensional input b̂t, we calculate

b̂t,0 = CT
l b̂t, v0

def
= ∥b̂t,0∥1 using the first two layers. It holds that 1 − O(exp(−3T )) ≤ v0 ≤

CT
l +O(exp(−3T )) since ∥b̂t − b̃t∥∞ = O(exp(−4T )) and cTl ≤ ∥b̃t∥1 ≤ 1. We use

For the next 4k + 1-st to 4k + 4-th layers (k = 0, 1, ..., ⌈log2 T ⌉), we process the vector b̂t,k as
follows:

• Use layer 4k + 1 and 4k + 2 to compute p(vk − C
⌊T/2k+1⌋
l ) where

p(x) = ReLU (1− ReLU(−x)) =


1 x ≥ 1

x 0 ≤ x < 1

0 0 < x

(E.53)

.
• Use layer 4k + 3 and 4k + 4 to approximate

vk+1
def
= p

(
vk − C

⌊T/2k+1⌋
l

)
c
⌊T/2k+1⌋
l vk +

(
1− p(vk − C

⌊T/2k+1⌋
l )

)
vk (E.54)

b̂t,k+1
def
= p

(
vk − C

⌊T/2k+1⌋
l

)
c
⌊T/2k+1⌋
l b̂t,k +

(
1− p(vk − C

⌊T/2k+1⌋
l )

)
b̂t,k (E.55)

by Lemma D.2 to perform the multiplication, so that vk+1 = ∥b̂t,k+1∥1. We choose the
parameters of these two layers to guarantee that the approximation error is O(exp(−3T )).
Let the output of layer 4k + 4 for vk be v̂k.

Now we prove by induction that 1/2 ≤ vk ≤ C
⌊T/2k⌋
l + 1 for all k, where the case for k = 0 is

trivial. If C⌊T/2k⌋
l + 2 ≥ vk ≥ C

⌊T/2k+1⌋
l + 1, then 1 ≤ vk+1 = vkc

⌊T/2k+1⌋
l ≤ C

⌊T/2k+1⌋
l + 1.

The case for vk ≤ C
⌊T/2k+1⌋
l is similar.

If C⌊T/2k+1⌋
l < vk < C

⌊T/2k+1⌋
l + 1, then we can rewrite vk+1 using the difference pk

def
= p(vk −

C
⌊T/2k+1⌋
l ) = vk − C

⌊T/2k+1⌋
l :

vk+1 = (1− pk)C
⌊T/2k+1⌋
l + p2kc

⌊T/2k+1⌋
l + pk(2− pk), 0 < pk < 1. (E.56)

It is nor hard to show that it still holds that 1/2 ≤ vk+1 ≤ C
⌊T/2k+1⌋
l + 1.

Next we analyze the approximation error of multiplication. For k = 0 it holds that |v̂k − vk| = 0.
Note that

v̂k+1
def
= p(v̂k − C

⌊T/2k+1⌋
l )c

⌊T/2k+1⌋
l v̂k + (1− p(v̂k − C

⌊T/2k+1⌋
l ))v̂k.

Since the function p is 1-Lipschitz and vk = O(exp(T/2k)), it holds that |v̂k+1 − vk+1| ≤
O(exp(T/2k))|v̂k − vk| + O(exp(−3T )). The ℓ∞ approximation error of b̂t,k is the same as
that of vk.

Let b̄t be the output of the 4⌈log2 T ⌉ + 4 layer, then it holds that ∥b̄t/∥b̄t∥1 − b̂t/∥b̂t∥1∥∞ ≤
O(exp(−2T )) and 1/4 ≤ ∥b̄t∥1 < 3/2.

Normalizing the vector b̄t. The output b̄t of the first part of the MLP is then fed into the second
part of the MLP. Denote 0 ≤ c1

def
= 1− 2∥b̄t∥1/3 < 5/6, then the final target is to compute

2b̄t
3(1− c1)

=
2b̄t
3

(
1 + c1 + c21 + · · ·

)
.

If we use O(k)-layers in the second part of the MLP, then we can approximate the sum

1 + c1 + c21 + · · ·+ c2
k−1

1

with error O(exp(−T )) by picking appropriate parameters according to Lemma D.2.
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Moreover, ∣∣∣∣ 1

1− c1
− 1 + c1 + c21 + · · ·+ c2

k−1
1

∣∣∣∣ = c2
k

1

1− c1
≤ 6

(
5

6

)2k

. (E.57)

Therefore, it suffices to choose k = O(log T ) to approximate 2b̄t/3(1−c1) in ℓ∞ error O(exp(−T )).
Aggregating the approximation error of both parts of the MLP, the overall approximation error is
O(exp(−T )).
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